
Bayesian Optimization: Basics & Challenges

Zhenwen Dai

Spotify

2020-01-22

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 1 / 42

Bayesian Optimization
[Močkus, 1975]

Bayesian Optimization (BO) is a family of global optimization methods for an unknown
objective function with a bounded space:

x∗ = argmin
x∈X

f(x).

The cost of obtaining a value of f at a chosen location is very expensive.

The gradient of f is usually not available.

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 2 / 42

Real-world Applications

Automated Machine Learning

drug discovery

design optimization

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 3 / 42

Surrogate modelling

The core idea: building a probabilistic model of the unknown objective.

Predict the value of the objective function at unseen locations with uncertainty.

Explicitly encode the domain knowledge about the objective function.

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 4 / 42

Surrogate modelling: Common choices

Gaussian process (GP) is the most common choice of surrogate model for BO.

GP is a distribution of functions.
https://www.youtube.com/watch?v=VsW-eTsqBCk

Other probabilistic models such as random forests and bayesian neural networks
have been studied as well.

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 5 / 42

https://www.youtube.com/watch?v=VsW-eTsqBCk

A common BO loop

1 Select a prior distribution about the unknown function f .

2 Estimate the posterior distribution of f based on the data collected so far.

3 Use the posterior to decide where to collect the next datapoint according to some
acquisition/loss function.

4 Collect the output of f at the chosen location and augment the data.

5 Repeat from Step 2.

Run the algorithm until the budget is over.

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 6 / 42

How to choose the next location for evaluation?
Exploration vs. Exploitation

? ?or

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 7 / 42

Choose the next location

The policy of BO is usually phrased as

The value of every location in the search space is scored by a utility function based
on the prediction of the surrogate model, often called acquisition function, α(x;D).

The next evaluation is chosen as the location having the highest value:

xt+1 = argmax
x∈X

α(x;Dt).

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 8 / 42

Acquisition function
Heuristic function for exploration and exploitation trade-off

Upper confidence bound (UCB)

αLCB(x;D) = −µ(x;D) + βσ(x;D)

Expected improvement (EI)

αEI(x;D) =

∫

y

max(0, ŷ − y)p(y|x,D)dy

Thompson sampling

αthompson(x;D) = −g(x), g(·) ∼ GP(f(·)|D)

Entropy search (ES)

αES(x;D) = H[p(xmin|D)]− Ep(y|D,x)[H[p(xmin|D ∪ {x, y})]]
Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 9 / 42

A BO Example

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 10 / 42

A BO Example

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 11 / 42

A BO Example

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 12 / 42

A BO Example

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 13 / 42

A BO Example

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 14 / 42

A BO Example

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 15 / 42

A BO Example

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 16 / 42

A BO Example

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 17 / 42

Challenges

Bayesian Optimization has shown good performance for low-dimensional (up to 20) and
smooth objective functions.

Challenges:

Batch / Parallel Evaluation

Non-myopic

The dimensionality of space

Structured search space

Multi-task/objective search, Multi-fidelity search

Warm-start search

Large number of evaluations

Nasty objective functions: lots of local optimals, non-stationality

Indirect observation

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 18 / 42

Batch / Parallel Bayesian optimization

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 19 / 42

Batch / Parallel Bayesian optimization

Common approaches:

Draw multiple independent samples Thomas Sampling.

Extend acquisition functions with multiple points

Penalize an acquisition function near selected locations.

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 20 / 42

Multiple Independent Thomas Samples
[Hernández-Lobato et al., 2017]

Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space

instead of p(yj |xj , DI), with ✓ being a sample from
the posterior p(✓|DI). That is, when computing the
AF, TS approximates the integral in p(yj |xj , DI) =R

p(yj |xj ,✓)p(✓|DI) d✓ by Monte Carlo, using a single
sample from p(✓|DI) in the approximation. The TS utility
function enforces only exploitation because the expected
utility is insensitive to any variance in yj . Despite this, TS
still enforces exploration because of the variance produced
by the Monte Carlo approximation to p(yj |xj , DI). Under
TS, the probability of evaluating the objective at a particu-
lar location matches the probability of that location being
the maximizer of the objective, given the model assump-
tions and the data from past evaluations. Algorithm 1 con-
tains the pseudocode for TS. The plots in the top of Figure
1 illustrate how TS works. The top-left plot shows sev-
eral samples from a posterior distribution on f induced by
p(✓|DI) since each value of the parameters ✓ corresponds
to an associated value of f . Sampling from p(✓|DI) is then
equivalent to selecting one of these samples for f . The se-
lected sample represents the current AF, which is optimized
in the top-right plot in Figure 1 to select the next evaluation.

2.1. Parallel BO
So far we have considered the sequential evaluation setting,
where BO methods collect just a single data point in each
iteration. However, BO can also be applied in the parallel
setting, which involves choosing a batch of multiple points
to evaluate next in each iteration. For example, when we
run S parallel simulations in a computer cluster and each
simulation performs one evaluation of f .

Snoek et al. (2012) describe how to extend sequential BO
methods to the parallel setting. The idea is to select the first
evaluation location in the batch in the same way as in the
sequential setting. However, the next evaluation location
is then selected while the previous one is still pending. In
particular, given a set K with indexes of pending evaluation
locations, we choose a new location in the batch based on
the expectation of the AF under all possible outcomes of
the pending evaluations according to the predictions of the
model. Therefore, at any point, the next evaluation location
is obtained by optimizing the AF

↵parallel(xj |DI , K) =

Ep({yk}k2K|{xk}k2K,DI) [↵(xj |DI [DK)] , (2)

where DK = {(yk,xk)}k2K and ↵(xj |DI [DK) is given
by (1). Computing this expression exactly is infeasible in
most cases. Snoek et al. (2012) propose a Monte Carlo
approximation in which the expectation in the second line
is approximated by averaging across a few samples from
the predictive distribution at the pending evaluations, that
is, p({yk}k2K|{xk}k2K, DI). These samples are referred
to as fantasized data.

This approach for parallel BO has been successfully used

to collect small batches of data (about 10 elements in size),
with EI as utility function and with a Gaussian process as
the model for the data (Snoek et al., 2012). However, it
lacks scalability to large batch sizes, failing when we need
to collect thousands of simultaneous measurements. The
reason for this is the high computational cost of adding a
new evaluation to the current batch. The corresponding
cost includes: 1 sampling the fantasized data, 2 updating
the posterior predictive distribution to p(yj |xj , DI [DK),
which is required for evaluating ↵(xj |DI [DK), and 3
optimizing the Monte Carlo approximation to (2). Step 2
can be very expensive when the number of training points
in DI is very large. This step is also considerably challeng-
ing when the model does not allow for exact inference, as
it is often the case with Bayesian neural networks. Step 3
can also take a very long time when the library of candidate
molecules M is very large (e.g., when it contains millions
of elements) and among all the remaining molecules we
have to find one that maximizes the AF.

Despite these difficulties, the biggest disadvantage in this
approach for parallel BO is that it cannot be parallelized
since it is a sequential process in which (2) needs to be
iteratively optimized, with each optimization step having
a direct effect on the next one. This prevents this method
from fully exploiting the acceleration provided by multiple
processors in a computer cluster. The sequential nature of
the algorithm is illustrated by the plot in the left of Figure 2.
In this plot computer node 1 is controlling the BO process
and decides the batch evaluation locations. Nodes 2, . . . , 5
then perform the evaluations in parallel. Note that steps 2
and 3 from the above description have been highlighted in
green and magenta colors.

In the following section we describe an algorithm for batch
BO which can be implemented in a fully parallel and dis-
tributed manner and which, consequently, can take full ad-
vantage of multiple processors in a computer cluster. This
novel method is based on a parallel implementation of the
Thompson sampling heuristic.

Algorithm 2 Parallel and distributed Thompson sampling

Input: initial data DI(1) = {xi, yi}i2I(1), batch size S
for t = 1 to T do

Compute current posterior p(✓|DI(t))
for s = 1 to S do

Sample ✓ from p(✓|DI(t))
Select k(s) argmaxj 62I(t)E[yj |xj ,✓]
Collect yk(s) by evaluating f at xk(s)

end for
DI(t+1) = DI(t) [{xk(s), yk(s)}S

s=1

end for

E
xe

cu
te

d
in

pa
ra

lle
l

in
no

de
s

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 21 / 42

q-EI, q-UCB
[Ginsbourger et al., 2007], [Wang et al., 2016], [Wilson et al., 2018]

The multi-point extension of EI:

q-EI(X) = E
[
max(f ∗ − min

i=1,...,q
f(xi), 0)

]

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 22 / 42

Local Penalization
[González et al., 2016]

Assume the object function is Lipschitz continuous.
Javier González, Zhenwen Dai, Philipp Hennig, Neil Lawrence

Figure 1: Forrester function f(x) = (6x�2)2 sin(12x�
4) in the interval [0.3, 01, 4]. We take 6 evaluations
x1, . . . ,x6 of the function, M = maxi f(xi) and L =
400. The exclusion zones for the maximum of f deter-
mined by the balls Br(xi) are shown.

where L is a global positive constant, and k · k is the
`2-norm on IRd, a property that has been previously
exploited in global optimization [Horst and Pardalos,
1995, Strongin and Sergeyev, 2000].

In the context of parallelizing Bayesian optimization, a
beneficial aspect of the Lipschitzian assumption is that
it naturally allows us to place bounds on how far the
optimum of f is from a certain location. See Figure 1
for details. As explained below, this information can
be used to define policies to collect a batch of points
multiple steps ahead without evaluating f , by mimick-
ing the hypothesized behavior of a sequential policy.
The main challenge is that, in practice, the constant L
is unknown. In the literature, this problem has been
addressed from di↵erent angles [Floudas and Parda-
los, 2009]. We explore a new alternative: inferring the
Lipschitz constant directly from the Gaussian process
model for f .

Our contributions are: (i) A new batch BO heuristic,
BBO-LP, that selects batches of points by an iterative
maximization-penalization loop around the the acqui-
sition function. This leads to e�cient parallelization
of BO and can be used with any acquisition function.
(ii) A probabilistic framework to approximately infer
the Lipschitz constant of f , termed GP-LCA, that uses
the properties of the gradients of the GP. The inferred
value of L is used to improve batch selection. (iii)
A python implementation of several batch BO meth-
ods is published in conjunction with this work.1 (iv)
Confirmation of the e↵ectiveness of the approach is
demonstrated through several simulated experiments,
an algorithm configuration problem, and a real wet-lab
experimental design. In particular, the local penaliza-

1
http://she�eldml.github.io/GPyOpt/.

tion approach performs equal or better than current
batch BO methods in terms of the convergence to the
maximum, but shows better performance in terms of
the wall-clock time.

2 Maximization-Penalization Strategy

for Batch Design

The intuition behind our approach is that for most GP
priors in practical use for BO, the dominant e↵ect of
a function evaluation on the acquisition function is a
local exclusion around the new evaluation. This shape
of the acquisition function will be modeled through the
Lipschitz properties of f , to distribute the elements in
each batch. This should be understood as a heuristic
to the shape of ↵(x; It,k�1) if all previous observations
were available, mimicking the e↵ect a sequential pol-
icy. This is especially useful in cases in which the ac-
quisition function shows multi-modal shape, a common
situation in the first iterations of BO algorithms. The
following definition is helpful for the formalization of
the algorithm:

Definition 1 A function '(x;xj), x 2 X , is a lo-
cal penalizer of a generic acquisition function ↵(x) at
xj if '(x;xj) is di↵erentiable, 0  '(x;xj)  1 and
'(x;xj) is an non-decreasing function in kx� xjk.

We propose to replace the maximization-
marginalization loop in Eq. 2 by a maximization-
penalization strategy: while the optimization is
carried out in a similar fashion, the marginaliza-
tion step is replaced by the direct penalization of
↵(x; It,k�1) around its most recent maximum, i.e, the
previous batch element. Figure 2 gives a graphical
illustration. The maximization-penalization strategy
selects xt,k as

xt,k = argmax
x2X

8
<

:g(↵(x; It,0))
k�1Y

j=1

'(x;xt,j)

9
=

; , (4)

where '(x;xt,j) are local local penalizers centered at
xt,j and g : IR ! IR+ is a di↵erentiable transformation
of ↵(x) that keeps it strictly positive without chang-
ing the location of its extrema. We will use g(z) = z if
↵(x) is already positive and the soft-plus transforma-
tion g(z) = ln(1+ez) elsewhere. This does not require
re-estimation of the GP model after each location is
selected, just a new optimization of the penalized util-
ity.

The e↵ect of a local penalizer is to smoothly reduce the
value of the acquisition function in a neighborhood of
xj . A ‘good’ local penalizer centered at xj should re-
flect the belief about the distance from xj to xM : If
we suspect that xM is far from xj , a broad '(x;xj)

650

Batch Bayesian Optimization via Local Penalization

Figure 2: Illustration of three iterations of the maximization-penalization loop. The main task of good batch
design is to explore the modes of the acquisition function, achieved by iterative maximization (black stars) and
penalization (using '1(x),'2(x)) of the acquisition function ↵(x).

will discard a large portion of X in which we don’t
need to collect any sample. On the other hand, if we
believe that xM and xj are close, ideally we want to
minimize the penalization of ↵(x) and keep collecting
samples is a close neighborhood. This local penaliza-
tion mimics the acquisition function’s dynamics under
a sequential policy in the following sense: the modes
of the acquisition functions correspond to regions in
which either µn(x) or �2

n(x) (or both) are large. Eval-
uating, for instance, where �n(x) is large will reduce
uncertainty in that region, decreasing ↵(x) in a neigh-
borhood. The functions '(x;xj) are surrogates for
this neighborhood.

2.1 Choosing Local Penalizers '(x;xj)

We now construct penalizing functions '(x;xj) that
incorporate into ↵(x) the current belief about the dis-
tance from the batch locations to xM . Take M =
maxx2X f(x), and a valid Lipschitz constant L. Con-
sider the ball

Brj (xj) = {x 2 X : kxj � xk  rj} (5)

where

rj =
M � f(xj)

L
.

To simplify the notation we write rj = r(xj) for the
radius of the ball around xj . If f in (5) is the true
optimization objective, then xM /2 Brj (x)—otherwise
the Lipschitz condition would be violated. The size of
Brj (xj) depends on L, M and the value of f at xj .
Both large variability in f (large L) and proximity of
f(xj) to the optimum M shrink Brj (xj).

In the BO context, under the assumption f(x) ⇠

GP(µ(x), k(x,x0)), we choose '(x;xj) as the probabil-
ity that x, any point in X that is a potential candidate

to be a maximum, does not belong to Brj (xj):

'(x;xj) = 1� p(x 2 Brj (xj)). (6)

The following proposition (proof in Supp. Materials
shows that this local penalizer can be computed in
closed form.

Proposition 1 Let f(x) be a GP with posterior mean
µn(x) and posterior variance �2

n(x). The function
'(x;xj) in Eq. (6) is a valid local penalizer of ↵(x) at
xj such that:

'(x;xj) =
1

2
erfc (�z)

where z = 1p
2�2

n(xj)
(Lkxj � xk �M + µn(xj)) ,

for erfc the complementary error function, M =
maxx2X f(x) and L a valid Lipschitz constant.

The functions '(x;xj) thus create exclusion zones
whose size is governed by L. If µn(xj) is close to M ,
then '(x;xj) will have a smaller and more localized ef-
fect on ↵(x) (a smaller exclusion area). On the other
hand, if µn(xj) is far from M , '(x;xj) will produce a
wider yet less intense correction on ↵(x). The value of
L also a↵ects the size of the e↵ect of '(x;xj) on ↵(x),
decreasing it as L increases.

2.2 Selecting the parameters L and M

The values of M and L are unknown in general. To
approximate M , one can take M̂ = maxX µn(x) or, to
avoid solving this maximization problem, use the even
rougher approximation M̂ = maxi{yi}.

Regarding the parameter L note that the definition
of Lipschitz continuity in Eq. (3) does not uniquely

651

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 23 / 42

Search in Structured Space: Chemical design

Chemical design for generating novel molecules with optimized properties

Variational autoencoders

Variational autoencoders30,31 allow us to map molecules m to
and from continuous values z in a latent space. The encoding z
is interpreted as a latent variable in a probabilistic generative
model over which there is a prior distribution p(z). The proba-
bilistic decoder is dened by the likelihood function pq(m|z).
The posterior distribution pq(z|m) is interpreted as the proba-
bilistic encoder. The parameters of the likelihood pq(m|z) as
well as the parameters of the approximate posterior distribution
qf(z|m) are learned by maximizing the evidence lower bound
(ELBO)

Lðf; q;mÞ ¼ Eqfðz|mÞ
!
log pqðm; zÞ $ log qfðz|mÞ

"
:

Variational autoencoders have been coupled with recurrent
neural networks by ref. 32 to encode sentences into a contin-
uous latent space. This approach is followed for the SMILES
format both by ref. 21 and here. The SMILES variational
autoencoder, together with our constraint function, is shown in
Fig. 2.

The origin of dead regions in the latent space

The approach introduced in this paper aims to solve the
problem of dead regions in the latent space of the VAE. It is rst
however, important to understand the origin of these dead
zones. Three ways in which a dead zone can arise are:

(1) Sampling locations that are very unlikely under the prior.
This was noted in the original paper on variational autoen-
coders30 where sampling was adjusted through the inverse
conditional distribution function of a Gaussian.

(2) A latent space dimensionality that is articially high will
yield dead zones in the manifold learned during training.33 This
has been demonstrated to be the case empirically in ref. 34.

(3) Inhomogenous training data; undersampled regions of
the data space are liable to yield gaps in the latent space.

A schematic illustrating sampling from a dead zone, and the
associated effect it has on the generated SMILES strings, is
given in Fig. 3. In our case, the Bayesian optimization scheme is
decoupled from the VAE and hence has no knowledge of the
location of the learned manifold. In many instances the
explorative behaviour in the acquisition phase of Bayesian
optimization will drive the selection of invalid points lying far
away from the learned manifold.

Objective functions for Bayesian optimization of molecules

Bayesian optimization is performed here in the latent space of
the variational autoencoder in order to nd molecules that
score highly under a specied objective function. We assess
molecular quality on the following objectives:

Jcomp
log P(z) ¼ log P(z) $ SA(z) $ ring-penalty(z),

Jcomp
QED(z) ¼ QED(z) $ SA(z) $ ring-penalty(z),

JQED(z) ¼ QED(z).

z denotes a molecule's latent representation, log P(z) is the
water–octanol partition coefficient, QED(z) is the quantitative
estimate of drug-likeness35 and SA(z) is the synthetic accessi-
bility.36 The ring penalty term is as featured in ref. 21. The
“comp” subscript is designed to indicate that the objective
function is a composite of standalone metrics.

It is important to note, that the rst objective, a common
metric of comparison in this area, is misspecied as has been
pointed out by ref. 37. From a chemical standpoint it is unde-
sirable to maximize the log P score as is being done here. Rather
it is preferable to optimize log P to be in a range that is in
accordance with the Lipinski rule of ve.38 We use the penalized
log P objective here because regardless of its relevance for
chemistry, it serves as a point of comparison against other
methods.

Fig. 1 The SMILES representation and one-hot encoding for benzene.
For purposes of illustration, only the characters present in benzene are
shown in the one-hot encoding. In practice there is a column for each
character in the SMILES alphabet.

Fig. 2 The SMILES variational autoencoder with the learned constraint
function illustrated by a circular feasible region in the latent space.

Fig. 3 The dead zones in the latent space, adapted from ref. 21. The x
and y axes are the principle components computed by PCA. The
colour bar gives the log P value of the encoded latent points and the
histograms show the coordinate-projected density of the latent
points. One may observe that the encoded molecules are not
distributed uniformly across the box constituting the bounds of the
latent space.

578 | Chem. Sci., 2020, 11, 577–586 This journal is © The Royal Society of Chemistry 2020

Chemical Science Edge Article

O
pe

n
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d
on

 1
8

N
ov

em
be

r 2
01

9.
 D

ow
nl

oa
de

d
on

 1
/2

2/
20

20
 2

:4
0:

41
 P

M
.

 T
hi

s a
rti

cl
e

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
Li

ce
nc

e.
View Article Online

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 24 / 42

Search in Structured Space: Automatic statistician

Automatic exploratory data analysis

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 25 / 42

Embed Structured Space into Latent Space

Map a fixed length continuous representation into a structured (varying length)
representation.

Learning such a mapping from data with probabilistic generative models such as
VAE:

p(x) =

∫
p(x|z)p(z)dz

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 26 / 42

Bayesian Optimization in Latent Space

[Lu et al., 2018] Encode the known grammar into VAE.

[Griffiths and Hernández-Lobato, 2020] Learn the grammar from data.
Structured Variationally Auto-encoded Optimization

M
Mœ M

Y

z

z œ Z

GP with uncertain inputs (Bayesian GP-LVM)VAE

C

High dimensional and structured
input space M e. g. model selection criterion C(M)

- Search in the latent space Z
- Propagation of uncertainties via the

variational approximation q(z)

Expensive objective

Figure 1. Main elements of SVO: An expensive objective function needs to be optimized in a structured input space. A Variational
auto-encoder is trained to learn a latent space Z using data produced by a context-free grammar. BO is applied over the latent space via a
GP model with uncertain inputs to find the optimal kernel combination. The uncertainty of the latent space, computed using variational
inference techniques, is used in the search to balance exploration and exploitation.

that explains the data D the best. We denote by C : M æ R
some ‘goodness of fit measure’ that quantifies the quality
of the fit. We keep C(M) generic for the moment, and we
just assume that it is expensive enough such that it is only
feasible to evaluate in a few models in M. The problem
reduces to find

Mopt
— := arg max

MœM
C(M). (1)

Problem (1) is not suitable to be solved directly using
Bayesian optimization (BO) (Shahriari et al., 2016). The
reason is that the input space of Problem (1) is very struc-
tured, highly dimensional, and non-continuous so most BO
methods will fail. The key idea of the approach presented
in this paper is to transform Problem (1) into a problem that
can be handled with standard BO methods.

1.2. Related work

The idea of using BO in high dimensional and structured
spaces has already been explored in the literature. Random
projections (Wang et al., 2016), other generative models like
deep Gaussian processes (Dai et al., 2016) and combina-
tions of optimization and sampling strategies (Abbati et al.,
2017) have been developed. Bayesian optimization methods
able to deal with hierarchical dependencies have also been
proposed (Jenatton et al., 2017; Swersky et al., 2013). Some
interesting applications are the design of genes (Gonzalez
et al., 2014) and molecules (Kusner et al., 2017). Although
both works carry out optimization in the latent space pro-
duced by a VAE, the goal and approach of our work are
different, where we use a likelihood that directly encodes
the knowledge of the grammar in the decoder to map any
point in the latent space into a valid structure representation.
The works also differ in the application domains and the
propagation of the uncertainty in the latent space into the
search.

Regarding the AS, a few approaches have followed the orig-
inal compositional approach (Grosse et al., 2012; Duvenaud
et al., 2013). Kim & Teh (2016) scales this method to big
data scenarios by using sparse GPS. Hwang & Choi (2015)
developed relational kernel learning methods. Malkomes
et al. (2016) proposed, to the best of our knowledge, the first
approach that uses BO in this context. A parametric mea-
sure of kernels similarity, the Hellinger distance is used to
guide the search over a selected sets of kernel combinations.

1.3. Contributions and organization

We use the idea that kernel combinations can be expressed
as operations of a context-free grammar (Hopcroft et al.,
2006). This is used to simulate combinations with certain
properties or structure, similarly to the work of (Kusner
et al., 2017) where a grammar is used to generate molecules.
Gómez-Bombarelli et al. (2018) also used a context-free
grammar to optimize molecules. They used a RNN that
allows it to learn the structure of the problem directly from
data.

The idea we follow here is (i) to use a mechanism to gener-
ate data that represent well the set of feasible solutions of the
problem and (ii) use it to learn a low-dimensional manifold
in which the search for the optimal solution takes place. To
this end, we learn a latent variable model. We used a Varia-
tional auto-encoder (VAE) (Kingma & Welling, 2013) for
practicality, although any other continuous latent variable
model could be considered. With the problem mapped into
a low-dimensional space BO can be used to find the best
combination, circumventing the issues described in Section
1.1. Because there is uncertainty associated to the learned la-
tent space, we use variational inference to incorporate it into
the search. This has a positive effect, balancing exploration
and exploitation. See Figure 1 for a graphical description of

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 27 / 42

Grammar-based kernel representation

For regression, it is formulated as model selection on an finite combinatorial space
of kernel compositions.

A set of basic kernels: linear, stationary, period, ...

The sum or product of two kernels is still a kernel.

A grammar-based kernel representation

Structured Variationally Auto-encoded Optimization

Algorithm 1 Context-free grammar for kernel expressions
generation.

Input: Nmax, pB, B, pO, O, S = ÿ.
for k < Nmax do
S Ω S +B, select kernel with probability pB.
S Ω S +O: select operation with probability pO.

end for O is Stop or k = Nmax.

the main elements of the approach described in this work.
The main contributions are:

• A new Variational auto-encoder, called ‘Structure Gen-
erating Variational auto-encoder’ (SG-VAE). We de-
scribe and used it in the context of mapping kernel
combinations produced by a context-free grammar into
a continuous and low-dimensional latent space. Al-
though here we use it in the AS context, it is broadly
applicable. The main novelty of this approach is that
all information about the problem is directly encoded
in the likelihood of the model, in contrast to previous
approaches in which is learned from the data (Gómez-
Bombarelli et al., 2018).

• A variational approximation of the distribution of the
latent space of the SG-VAE. This distribution is used
to propagate the uncertainty of the SG-VAE into the
BO search. A GP with uncertain inputs is used to
make this step practical.

• A series of experiments that illustrate the utility of this
work in model selection and in a problem where the
goal is to find the best textual description of a Minecraft
image.

• An implementation of the proposed approach
that can be found at the GPyOpt library
https://github.com/SheffieldML/GPyOpt
together with the scripts to reproduce the results of
this work.

Section 2 describes the SG-VAE model and in Section 2.4
we detail how the SG-VAE can be used in optimization
problems. In Section 3, we illustrate its performance with a
series of experimental results. In Section 4 we include some
conclusions and further lines of research derived from this
work.

2. Variational Auto-encoders for structured
spaces representation

In this section we present a new VAE to map structured
input spaces into low-dimensional latent manifold. We de-
scribe it in the the context of the AS, so the goal is to use

it to find good representations of kernel combinations pro-
duced by a context-free grammar. We describe the encoder,
decoder and a variational approximation of the distribution
of the latent variables.

2.1. Grammar-based Kernel Representation

It is possible to generate a countably infinite kernel space
through closure of kernels via a context-free grammar.
Given a set of base kernels B we can generate an expression
(kernel combination) S by subsequently adding kernels and
operations O (additions, multiplications, replacements or
Stop) (Duvenaud et al., 2013; Grosse et al., 2012). Both
the kernels and the operations are chosen according to pre-
specified probabilities pB and pO. See Algorithm 1.

We use 1-hot encoding vectors for both, kernels and op-
erations, to represent each expression S. Suppose that
B = {K1,K2,K3,K4} is the set of four base kernels and
O = {+,◊, Stop} is the set of operations. Any expres-
sion S is transformed into a binary vector by recurrently
attaching the 1-hot vectors of each kernel and operation.
When the operation is Stop the vector is completed with
zeros. For instance, in the following example, four kernels
are combined using a number of Nmax operations. Before
termination we have:

K2¸˚˙˝
0100

+¸˚˙˝
100

K1¸˚˙˝
1000

ú¸˚˙˝
010

K3¸˚˙˝
0010

ú¸˚˙˝
010

K1¸˚˙˝
1000

Stop¸˚˙˝
001

...¸˚˙˝
Add 000

This grammar-based representation, that we denote by xg,
captures the complexity of the combination 1.

The grammar-based representation accounts for kernel com-
plexity but it does not take into account the differences in the
combinations due to the dataset D. For this, a data-based
representation is proposed in the next section.

2.2. Data-based Kernel Representation

We use the vector of distances between the kernel matri-
ces of the base kernels evaluated in the data and the kernel
matrices of the combinations. Details about how to deal
with the hyper-parameters of the kernels are in the exper-
imental section. As a measure of distance, the Hellinger
distance could be used (Malkomes et al., 2016). However
its O(n4) complexity makes it prohibitively slow. We found
that the Frobenius distance works well and it is also very
quick to compute. We denote this data-based representation
by xd which we normalise before the VAE. The global rep-
resentation for each combination is therefore x = [xg,xd],
which has dimension (Nmax + 1)|B|+ (Nmax ≠ 1)|O| for
Nmax the maximum number of allowed operations (added
kernels).

1Note that x here and in the definition of D represent different
vectors.

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 28 / 42

Experiment results on automatic statistician

Structured Variationally Auto-encoded Optimization

Figure 3. Results obtained by the SVO method in the Airline dataset using four base kernels. We search for the optimal combination with
different sample sizes. The vertical red lines of the plots represent the separation between training data (on the left of the line) and test
data (on the right).

Figure 4. Comparison of the SVO algorithm and the compositional kernel search CKS. SVO is able to optimize the model selection
criterion faster in all datasets. Interestingly, SVO does no need to start the seach on the base kernels which allows to consider more
complex combinations faster that the CKS.

model selection criterion. In standard cases, the inputs of
the GP are also the inputs of the objective function (C(M)
in AS). In SVO, the inputs of the GP are the latent rep-
resentations z, which is different from the inputs of the
objective function. This gives rise to a problem: a model
configuration x may correspond to multiple points z in la-
tent space. This uncertainty can be captured by the posterior
distribution p(z|x), which is intractable in SG-VAE. In-
stead, we estimate a mean-field variational approximation
q“(z|x) of the posterior detailed in Section 2.3.3. To factor
in this uncertainty in the inference of GP, we use Gaussian
process with uncertainty inputs (Damianou et al., 2016), in
which we fit a Gaussian process between considering inputs
following the distribution q“(z|x).

The posterior of the GP is used to create an acquisition func-
tion that is used to select the next points to evaluate. In this
work we used the Expected Improvement (Mockus, 1977)
(EI) but other acquisition functions are also possible. Note
that, as we use mean and variance from the GP with uncer-
tain inputs, the distribution q“(zı) is automatically pushed
into the acquisition. The next evaluation is placed at the
global maximum of the EI function (Shahriari et al., 2016).

See Algorithm 3 for a full description of the algorithm that
we call Structured Variationally auto-encoded optimization
(SVO).

3. Experiments
We show three experiments. The first one explains the
behaviour of the method in a time series. The goal is to in-
terpret how new kernels are selected as soon as we provide
more data to the system so more structure in the kernel can
be inferred. The second experiment compares SVO with
the compositional kernel search (CKS) (Duvenaud et al.,
2013) method. The third one formulates natural scene un-
derstanding as a searching problem in structured space and
apply SVO to infer the content in a natural scene. Inspired
by (Wu et al., 2017), we use “Minecraft" as a nature scene
generation engine and show SVO successfully produces a
good interpretation of an image with a few attempts.

3.1. The Airline dataset

We apply the SVO algorithm to fit the Airline passenger
data (Box & Jenkins, 1990), a time series that consists of

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 29 / 42

Experiment results on automatic statistician

Structured Variationally Auto-encoded Optimization

Figure 3. Results obtained by the SVO method in the Airline dataset using four base kernels. We search for the optimal combination with
different sample sizes. The vertical red lines of the plots represent the separation between training data (on the left of the line) and test
data (on the right).

Figure 4. Comparison of the SVO algorithm and the compositional kernel search CKS. SVO is able to optimize the model selection
criterion faster in all datasets. Interestingly, SVO does no need to start the seach on the base kernels which allows to consider more
complex combinations faster that the CKS.

model selection criterion. In standard cases, the inputs of
the GP are also the inputs of the objective function (C(M)
in AS). In SVO, the inputs of the GP are the latent rep-
resentations z, which is different from the inputs of the
objective function. This gives rise to a problem: a model
configuration x may correspond to multiple points z in la-
tent space. This uncertainty can be captured by the posterior
distribution p(z|x), which is intractable in SG-VAE. In-
stead, we estimate a mean-field variational approximation
q“(z|x) of the posterior detailed in Section 2.3.3. To factor
in this uncertainty in the inference of GP, we use Gaussian
process with uncertainty inputs (Damianou et al., 2016), in
which we fit a Gaussian process between considering inputs
following the distribution q“(z|x).

The posterior of the GP is used to create an acquisition func-
tion that is used to select the next points to evaluate. In this
work we used the Expected Improvement (Mockus, 1977)
(EI) but other acquisition functions are also possible. Note
that, as we use mean and variance from the GP with uncer-
tain inputs, the distribution q“(zı) is automatically pushed
into the acquisition. The next evaluation is placed at the
global maximum of the EI function (Shahriari et al., 2016).

See Algorithm 3 for a full description of the algorithm that
we call Structured Variationally auto-encoded optimization
(SVO).

3. Experiments
We show three experiments. The first one explains the
behaviour of the method in a time series. The goal is to in-
terpret how new kernels are selected as soon as we provide
more data to the system so more structure in the kernel can
be inferred. The second experiment compares SVO with
the compositional kernel search (CKS) (Duvenaud et al.,
2013) method. The third one formulates natural scene un-
derstanding as a searching problem in structured space and
apply SVO to infer the content in a natural scene. Inspired
by (Wu et al., 2017), we use “Minecraft" as a nature scene
generation engine and show SVO successfully produces a
good interpretation of an image with a few attempts.

3.1. The Airline dataset

We apply the SVO algorithm to fit the Airline passenger
data (Box & Jenkins, 1990), a time series that consists of

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 30 / 42

Preferential Bayesian Optimization

Many functions that we are interested in optimizing
is hard to measure:

I user experience, e.g, UI design
I movie/music rating

Human are much better at comparing two things,
e.g., is this coffee better than the previous one?

To search for the most preferred option via only
pair-wise comparisons.

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 31 / 42

Preference Function

Preference function: p(y = 1|x, x′) = π(x, x′) = σ(g(x′)− g(x)).
Copeland function: S(x) = 1

Vol(X)

∫
X Iπ(x,x′)≥0.5dx′.

The minimal of a Copeland function corresponds to the most preferred choice.

−10

−5

0

5

10

15

20

f(
x)

Objective function

Global minimum

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sc
or

e
va

lu
e

Copeland and soft-Copeland functions

Copeland
soft-Copeland

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

x’

0.5

0.5

0.5

Preference function

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 32 / 42

A Surrogate Model of Preference Function

The preference function is not observable.

Only observe a few comparisons.

Need a surrogate model to guide the search.

We propose to build a surrogate model for the
preference function.

Pros: easy to model (Gaussian process Binary
Classification is used:)

Pros: flexible latent function (e.g., non-stationality).

Cons: the minimum of the latent function is not
directly accessible

�10

�5

0

5

10

15

20

f(
x)

Objective function

Global minimum

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sc
or

e
va

lu
e

Copeland and soft-Copeland functions

Copeland
soft-Copeland

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

x’

0.5

0.5

0.5

Preference function

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Expectation of y? and σ(f?)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 33 / 42

Acquisition Function

Existing Acq. Func. are not applicable.

They are designed to work with a surrogate model
of the objective function.

In PBO, the surrogate model does not directly
represent the latent objective function.

We need a new Acq. Func. for duels!

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Expectation of y? and σ(f?)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 34 / 42

Acquisition Function: PBO-DTS

To select the next duel [x, x′]:

1 Draw a sample from surrogate model

2 Take the maximum of soft-Copeland score as x.

3 Take x′ that gives the maximum in PBO-PE

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Sample of σ(f?)

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Sampled Copeland Function

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Variance of σ(f?)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 35 / 42

Experiment: Forrester Function

Synthetic 1D function:
Forrester

Observations drawn with a
probability: 1

1+eg(x)−g(x′)

g(xc) shows the value at
the location that
algorithms believe is the
minimum.

The curve is the average
of 20 trials.

IBO: [Brochu, 2010]
SPARRING: [Ailon et al., 2014]

0 25 50 75 100 125 150 175 200
#iterations

−6

−4

−2

0

2

g
(x

c)

Forrester

PBO-PE

PBO-DTS

PBO-CEI

RANDOM

IBO

SPARRING

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 36 / 42

Experiments: More (2D) Functions

0 25 50 75 100 125 150 175 200
#iterations

−6

−4

−2

0

2

g
(x

c)
Forrester

PBO-PE

PBO-DTS

PBO-CEI

RANDOM

IBO

SPARRING

0 25 50 75 100 125 150 175 200
#iterations

−0.5

0.0

0.5

1.0

1.5

2.0

g
(x

c)

Six Hump Camel

PBO-PE

PBO-DTS

RANDOM

IBO

0 25 50 75 100 125 150 175 200
#iterations

103

104

g
(x

c)

Gold Stein

PBO-PE

PBO-DTS

RANDOM

IBO

0 25 50 75 100 125 150 175 200
#iterations

100

101

g
(x

c)

Levy

PBO-PE

PBO-DTS

RANDOM

IBO

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 37 / 42

When no correlation considerred

Discretize the 2D space into a 30 x 30 grid and apply dueling bandits.

0 500 1000 1500 2000 2500 3000 3500 4000
#iterations

−1

0

1

2

3

4

5

6
g
(x

c)
Six Hump Camel

PBO-DTS

SPARRING

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 38 / 42

Multi-task Bayesian optimization

Multi-task Bayesian Optimization
[Wersky et al., 2013]

I Correlation among tasks reduces global uncertainty.

I The choice (acquisition) changes.
Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 39 / 42

Relation to Hyper-Parameter Optimization (HPO)

HPO is a concrete global optimization problem with expensive objective functions.

BO has been a very successful method for HPO.

There are many other optimization methods developed dedicated to HPO such as
Hyperband, BOHB.

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 40 / 42

Q & A

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 41 / 42

Nir Ailon, Zohar Shay Karnin, and Thorsten Joachims. Reducing dueling bandits to cardinal bandits. In
Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China,
21-26 June 2014, pages 856–864, 2014.

Eric Brochu. Interactive Bayesian Optimization: Learning Parameters for Graphics and Animation.
PhD thesis, University of British Columbia, Vancouver, Canada, December 2010.

David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. A multi-points criterion for deterministic
parallel global optimization based on kriging. 2007.

J. González, Z. Dai, P. Hennig, and N. Lawrence. Batch bayesian optimization via local penalization.
In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 648–657, 2016.

Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for
automatic chemical design using variational autoencoders. Chem. Sci., 11:577–586, 2020.

José Hernández-Lobato, James Requeima, Edward Pyzer-Knapp, and Alán Aspuru-Guzik. Parallel and
distributed thompson sampling for large-scale accelerated exploration of chemical space. In ICML,
2017.

Xiaoyu Lu, Javier Gonzalez, Zhenwen Dai, and Neil Lawrence. Structured variationally auto-encoded
optimization. In Proceedings of the 35th International Conference on Machine Learning, 2018.

J. Močkus. On bayesian methods for seeking the extremum. In G. I. Marchuk, editor, Optimization
Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974, pages 400–404. Springer Berlin
Heidelberg, 1975.

Jialei Wang, Scott Clark, Eric Liu, and Peter Frazier. Parallel bayesian global optimization of expensive
functions. 2016.

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 0 / 42

JT Wilson, F Hutter, and Marc Deisenroth. Maximizing acquisition functions for bayesian optimization.
In Neurips, 2018.

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 0 / 42

	Appendix
	References

