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Bayesian Optimization
[Motkus, 1975]

Bayesian Optimization (BO) is a family of global optimization methods for an unknown
objective function with a bounded space:

X" = argmin f(x).

@ The cost of obtaining a value of f at a chosen location is very expensive.

@ The gradient of f is usually not available.
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Real-world Applications

@ Automated Machine Learning
@ drug discovery

@ design optimization
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Surrogate modelling

The core idea: building a probabilistic model of the unknown objective.

@ Predict the value of the objective function at unseen locations with uncertainty.
e Explicitly encode the domain knowledge about the objective function.
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Surrogate modelling: Common choices

@ Gaussian process (GP) is the most common choice of surrogate model for BO.

e GP is a distribution of functions.
https://www.youtube.com/watch?v=VsW-eTsqBCk

@ Other probabilistic models such as random forests and bayesian neural networks
have been studied as well.
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https://www.youtube.com/watch?v=VsW-eTsqBCk

A common BO loop

@ Select a prior distribution about the unknown function f.
© Estimate the posterior distribution of f based on the data collected so far.

© Use the posterior to decide where to collect the next datapoint according to some
acquisition/loss function.

© Collect the output of f at the chosen location and augment the data.
© Repeat from Step 2.

Run the algorithm until the budget is over.

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 6/42



How to choose the next location for evaluation?

Exploration vs. Exploitation
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Choose the next location

The policy of BO is usually phrased as

@ The value of every location in the search space is scored by a utility function based
on the prediction of the surrogate model, often called acquisition function, «(x; D).

@ The next evaluation is chosen as the location having the highest value:

Xpp1 = argmax a(x; Dy).
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Acquisition function

Heuristic function for exploration and exploitation trade-off

e Upper confidence bound (UCB)
arce(z; D) = —u(x; D) + Bo(x; D)

e Expected improvement (EI)
ae(a: D) = [ max(0.5 - y)p(yie, Ddy
Y

@ Thompson sampling

Ofthompson(l'; D) = —g(ZL'), g() ~ gP(f()|D)

e Entropy search (ES)

aes(; D) = H[p(zmin| D)] = Ep(yip,o) [H [p(Tmin| D U {2, y})]]

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges 2020-01-22 9/42




A BO Example
== True objective I I | Pl
Current best -
‘I
’
— r
>< 'l
—— ,
* —-——--""_* pa
hal " ‘\.... "
0.0 0.2 0.4 0.6 08 1.0
x
w
0.0 0.2 0.4 0.6 0.8 1.0

2020-01-22 10/ 42

Bayesian Optimization: Basics & Challenges

Zhenwen Dai (Spotify)



A BO Example
== True objective I I | .
Current best -
‘I
.
— r
>< 'l
—— ,
= = % _——--—'""—* L
 ragpanm T - ‘\.... "
0.0 0.2 0.4 0.6 08 1.0
x
w
0.0 0.2 0.4 0.6 0.8 1.0

2020-01-22 11/42

Bayesian Optimization: Basics & Challenges

Zhenwen Dai (Spotify)



A BO Example
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A BO Example

= = True objective
Current best
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A BO Example

= = True objective
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A BO Example

= = True objective
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Challenges

Bayesian Optimization has shown good performance for low-dimensional (up to 20) and
smooth objective functions.

Challenges:

Batch / Parallel Evaluation

Non-myopic

The dimensionality of space

Structured search space

Multi-task /objective search, Multi-fidelity search
Warm-start search

Large number of evaluations

Nasty objective functions: lots of local optimals, non-stationality
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Indirect observation
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Batch / Parallel Bayesian optimization
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Batch / Parallel Bayesian optimization

Common approaches:

@ Draw multiple independent samples Thomas Sampling.
@ Extend acquisition functions with multiple points

@ Penalize an acquisition function near selected locations.
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Multiple Independent Thomas Samples
[Herndndez-Lobato et al., 2017]

Algorithm 2 Parallel and distributed Thompson sampling

Input: initial data D71y = {X;, ¥i }iez(1) batch size S
fort =1to 7 do

Compute current posterior p(6|Dz(¢))

for s =1to S do

E---S-al'ltrnlﬁlnélélf-‘I:cl)i’ill};l(éibnzlgt-)ljnllnll.ll..ll.lln; :@;;‘: 2
: : .S
: Select k(s) argmaxjgz(t)E[yﬂxj,O]E § § S
: Collect yy,(,) by evaluating f at Xp(s) Lﬁ_‘: k=
end for
D = Dz U {x 3o

Z(t+1) Z(t) k(s)s Yk(s) Ss=1

end for
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g-El, g-UCB

[Ginsbourger et al., 2007], [Wang et al., 2016], [Wilson et al., 2018]

The multi-point extension of El:

¢-EI(X) = E |max(f* — min f(x;),0)

i=1,...,q
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Local Penalization
[Gonzélez et al., 2016]

Assume the object function is Lipschitz continuous.
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Search in Structured Space: Chemical design

Chemical design for generating novel molecules with optimized properties
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Search in Structured Space: Automatic statistician

Automatic exploratory data analysis
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This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 t0 0.15.
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Embed Structured Space into Latent Space

@ Map a fixed length continuous representation into a structured (varying length)
representation.

@ Learning such a mapping from data with probabilistic generative models such as
VAE:

p(x) = / p(x|2)p(z)dz
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Bayesian Optimization in Latent Space

o [Lu et al., 2018] Encode the known grammar into VAE.
o [Griffiths and Herndndez-Lobato, 2020] Learn the grammar from data.

High dimensional and structured Expensive objective

input space M
()

>} e. g. model selection criterion C(M) ‘

GP with uncertain inputs (Bayesian GP-LVM)

- Search in the latent space Z
- Propagation of uncertainties via the
variational approximation ¢(z)
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Grammar-based kernel representation

@ For regression, it is formulated as model selection on an finite combinatorial space
of kernel compositions.

@ A set of basic kernels: linear, stationary, period, ...
@ The sum or product of two kernels is still a kernel.

@ A grammar-based kernel representation

Ky + Ky x Kz x K; Stop
P N e o g Vgl P
0100 100 1000 010 0o10 010 1000 001 Add 000
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Experiment results on automatic statistician
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Experiment results on automatic statistician
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Preferential Bayesian Optimization

@ Many functions that we are interested in optimizing
is hard to measure:

» user experience, e.g, Ul design
» movie/music rating

Q) I u 50000 '

@ Human are much better at comparing two things,
e.g., is this coffee better than the previous one?

@ To search for the most preferred option via only
pair-wise comparisons.
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Preference Function

@ Preference function: p(y = 1|z, 2') = w(z,2") = o(g(z’) — g(x)).
e Copeland function: S(z) = #(X) [ Lneo>05d2.
@ The minimal of a Copeland function corresponds to the most preferred choice.

Objective function Preference function
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A Surrogate Model of Preference Function

1.0y

Preference function
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The preference function is not observable.

Only observe a few comparisons.

Need a surrogate model to guide the search.

We propose to build a surrogate model for the
preference function.

Pros: easy to model (Gaussian process Binary
Classification is used:)

Expectation of y, and o(f,)

Pros: flexible latent function (e.g., non-stationality).

Cons: the minimum of the latent function is not
directly accessible
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Acquisition Function

f(x)
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e Existing Acq. Func. are not applicable.

El(x)

@ They are designed to work with a surrogate model
of the objective function.
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e In PBO, the surrogate model does not directly 08
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Acquisition Function: PBO-DTS

To select the next duel [z, 2/]:

@ Draw a sample from surrogate model
© Take the maximum of soft-Copeland score as .
© Take 2’ that gives the maximum in PBO-PE

Sample of o(f,) Sampled Copeland Function Variance of o(f,)
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Experiment: Forrester Function

@ Synthetic 1D function:

Forreste
Forrester orrester
. . fommmmen ! —— PBO-PE
@ Observations drawn with a o ] ' =~ PBO-DTS
. 1 Ty H
S S 5 —— PBO-CEI
probability: e =s@) o
@ g(z.) shows the value at | ke e IBO .
the location that “-7" SPARRING
algorithms believe is the
minimum. e
@ The curve is the average ottt

of 20 trials.

0 25
IBO: [Brochu, 2010]
SPARRING: [Ailon et al., 2014]
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Experiments: More (2D) Functions

Forrester
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When no correlation considerred

Discretize the 2D space into a 30 x 30 grid and apply dueling bandits.

Six Hump Camel
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Multi-task Bayesian optimization
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(@) Multi-task GP sample functions (b) Independent GP predictions (c) Multi-task GP predictions

Zhenwen Dai (Spotify) Bayesian Optimization: Basics & Challenges



Relation to Hyper-Parameter Optimization (HPO)

@ HPO is a concrete global optimization problem with expensive objective functions.
@ BO has been a very successful method for HPO.

@ There are many other optimization methods developed dedicated to HPO such as
Hyperband, BOHB.
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