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Probabilistic Models

Many probabilistic models have been discussed.

We are interested in probabilistic models because it provides how
uncertain it is about its prediction.

Uncertainty has been categorized into various names such as
epistemic uncertainty, aleatoric uncertainty, model uncertainty,
noise.

What do people mean by these types of uncertainty?
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Uncertainty in Discriminative Model

Regression as an example:

y = f(x) + ε

A simple example, Bayesian linear regression (BLR):

yi = w>Φ(xi) + εi

Two random variables:

w ∼ N (0, I), εi ∼ N (0, σ2)
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Uncertainty in Discriminative Model

By uncertainty, we usually mean how wide is the probabilistic
distribution of the predicted variable.

For BLR, it refers to var(y∗) = Ep(y∗|x∗)[(y∗ − ȳ∗)2].

If we obtain maximum likelihood estimate (MLE) of w, ŵ, the predictive
distribution is

p(y∗|x∗, ŵ) = ŵ>Φ(x∗) + ε∗.

If we do Bayesian inference over w, the predictive distribution is

p(y∗|x∗) =

∫
p(y∗|x∗,w)p(w|x,y)dw.
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Epistemic and Aleatoric Uncertainty

- Aleatoric uncertainty

Aleatoric uncertainty is also known as statistical uncertainty, and is
representative of unknowns that differ each time we run the same
experiment.

- Epistemic uncertainty

Epistemic uncertainty is also known as systematic uncertainty, and is due
to things one could in principle know but doesn’t in practice. This may
be because a measurement is not accurate, because the model neglects
certain effects, or because particular data has been deliberately hidden.
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Epistemic and Aleatoric Uncertainty in BLR

Use BLR as an example:

yi = w>Φ(xi) + εi, w ∼ N (0, I), εi ∼ N (0, σ2)

In the usual modeling scenario,

ε corresponds to aleatoric uncertainty. Measured as
var(y∗) = Ep(y∗|x∗,ŵ)[(y∗ − ȳ∗)2] = σ2.

w corresponds to epistemic uncertainty. Measured as
var(f∗) = Ep(f∗|x∗)[(f∗ − f̄∗)2], where f∗ = w>Φ(x∗).
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Separation of Uncertainty

With a probabilistic model, what we care is the predictive
distribution p(y∗|x∗).

The separation of epistemic and aleatoric uncertainty seems a bit
artificial. Do we really need to separate them?
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Probability Calibration
It is a common question in practice whether we should trust the
predictive probability.

What does it mean when a weather forecasting method predict 70%
of probability of raining.

It is an well understood question in frequentist statistics.

On Calibration of Modern Neural Networks

Chuan Guo * 1 Geoff Pleiss * 1 Yu Sun * 1 Kilian Q. Weinberger 1

Abstract
Confidence calibration – the problem of predict-
ing probability estimates representative of the
true correctness likelihood – is important for
classification models in many applications. We
discover that modern neural networks, unlike
those from a decade ago, are poorly calibrated.
Through extensive experiments, we observe that
depth, width, weight decay, and Batch Normal-
ization are important factors influencing calibra-
tion. We evaluate the performance of various
post-processing calibration methods on state-of-
the-art architectures with image and document
classification datasets. Our analysis and exper-
iments not only offer insights into neural net-
work learning, but also provide a simple and
straightforward recipe for practical settings: on
most datasets, temperature scaling – a single-
parameter variant of Platt Scaling – is surpris-
ingly effective at calibrating predictions.

1. Introduction
Recent advances in deep learning have dramatically im-
proved neural network accuracy (Simonyan & Zisserman,
2015; Srivastava et al., 2015; He et al., 2016; Huang et al.,
2016; 2017). As a result, neural networks are now entrusted
with making complex decisions in applications, such as ob-
ject detection (Girshick, 2015), speech recognition (Han-
nun et al., 2014), and medical diagnosis (Caruana et al.,
2015). In these settings, neural networks are an essential
component of larger decision making pipelines.

In real-world decision making systems, classification net-
works must not only be accurate, but also should indicate
when they are likely to be incorrect. As an example, con-
sider a self-driving car that uses a neural network to detect
pedestrians and other obstructions (Bojarski et al., 2016).

*Equal contribution, alphabetical order. 1Cornell University.
Correspondence to: Chuan Guo <cg563@cornell.edu>, Geoff
Pleiss <geoff@cs.cornell.edu>, Yu Sun <ys646@cornell.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).
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Figure 1. Confidence histograms (top) and reliability diagrams
(bottom) for a 5-layer LeNet (left) and a 110-layer ResNet (right)
on CIFAR-100. Refer to the text below for detailed illustration.

If the detection network is not able to confidently predict
the presence or absence of immediate obstructions, the car
should rely more on the output of other sensors for braking.
Alternatively, in automated health care, control should be
passed on to human doctors when the confidence of a dis-
ease diagnosis network is low (Jiang et al., 2012). Specif-
ically, a network should provide a calibrated confidence
measure in addition to its prediction. In other words, the
probability associated with the predicted class label should
reflect its ground truth correctness likelihood.

Calibrated confidence estimates are also important for
model interpretability. Humans have a natural cognitive in-
tuition for probabilities (Cosmides & Tooby, 1996). Good
confidence estimates provide a valuable extra bit of infor-
mation to establish trustworthiness with the user – espe-
cially for neural networks, whose classification decisions
are often difficult to interpret. Further, good probability
estimates can be used to incorporate neural networks into
other probabilistic models. For example, one can improve
performance by combining network outputs with a lan-
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Probability Calibration for Aleatoric and Epistemic
Uncertainty

Make sense for aleatoric uncertainty. It is i.i.d., ε1, . . . , εN ∼ p(ε).

Probability calibration for epistemic uncertainty?

Does the uncertainty from the exact Bayesian posterior warrant
calibrated probability on output?

How about the measure only happened once? How shall we give a
prior distribution? Would uncertainty be calibrated in this case?
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Uncertainty in Decision Making

Alternatively we may assess the quality of uncertainty by the
performance of downstream tasks.

Which uncertainty shall we use in Bayesian optimization,
experimental design?
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Preferential Bayesian Optimization

Many functions that we are interested in
optimizing is hard to measure:

I user experience, e.g, UI design
I movie/music rating

Human are much better at comparing two
things, e.g., is this coffee better than the
previous one?

To search for the most preferred option
via only pair-wise comparisons.
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Preference Function

Preference function: p(y = 1|x, x′) = π(x, x′) = σ(g(x′)− g(x)).

Copeland function: S(x) = 1
Vol(X )

∫
X Iπ(x,x′)≥0.5dx′.

The minimal of a Copeland function corresponds to the most
preferred choice.
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Exploration

p(y|x, x′) = π(x, x′)y(1− π(x, x′))1−y, π(x, x′) = σ(f(x, x′)).

E[y] = π(x, x′), var(y) = π(x, x′)(1− π(x, x′))
Preferential Bayesian Optimization
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Figure 2. Differences between the sources of uncertainty that can be used for the exploration of the duels. The three figures show different
elements of a GP used for preferential learning in the context of the optimization of the (latent) Forrester function. The model is learned
using the result of 30 duels. Left: Expectation of y?, which coincides with the expectation of �(f?) and that is denoted as ⇡f ([x?,x

0
?].

Center: Variance of output of the duels y?, that is computed as ⇡f ([x?,x
0
?](1 � ⇡f ([x?,x

0
?]). Note that the variance does not necessarily

decrease in locations where observations are available. Right: Variance of the latent function �(f?). The variance of �(f?) decreases in
regions where data are available, which make it appropriate for duels exploration contrast to the variance of y?.

Unfortunately, a closed form solution for

Vol(X )�1

Z

X
⇡f ([x,x0]; D, ✓)dx0

does not necessarily exist. In this work we use Monte-Carlo
integration to approximate the Copeland score at any x 2 X
via

C(x; D, ✓) ⇡ 1

M

MX

k=1

⇡f ([x,xk]); D, ✓), (5)

where x1, . . . ,xM are a set of landmark points to perform
the integration. For simplicity, in this work we select the
landmark points uniformly, although more sophisticated
probabilistic approaches can be applied (Briol et al., 2015).

The Condorcet winner can be computed by taking

xc = arg max
x2X

C(x; D, ✓),

which can be done using a standard numerical optimizer. xc

is the point that has, on average, the maximum probability of
wining most of the duels (given the data set D) and therefore
it is the most likely point to be the optimum of g.

3. Sequential Learning of the Condorcet
winner

In this section we analyze the case in which n extra duels
can be carried out to augment the dataset D before we have
to report a solution to (1). This is similar to the set-up in
(Brochu, 2010) where interactive Bayesian optimization is
proposed by allowing a human user to sequentially decide
the result of a number of duels.

In the sequel, we will denote by Dj the data set resulting
of augmenting D with j new pairwise comparisons. Our
goal in this section is to define a sequential policy for query-
ing duels: ↵([x,x0]; Dj , ✓). This policy will enable us to
identify as soon as possible the minimum of the the latent
function g. Note that here, differently to the situation in
standard Bayesian optimization, the search space of the
acquisition, X ⇥ X is not the same as domain X of the
latent function that we are optimizing. Our best guess about
its optimum, however, is the location of the Condorcet’s
winner.

We approach the problem by proposing three dueling ac-
quisition functions: (i) pure exploration (PE), the Copeland
Expected improvement (CEI) and duelling-Thompson sam-
pling, which makes explicitly use of the generative capa-
bilities of our model. We analyze the three approaches in
terms of what the balance exploration-exploitation means
in our context. For simplicity in the notation, in the sequel
we drop the dependency of all quantities on the parameters
✓ of the model.

3.1. Pure Exploration

The first question that arises when defining a new acquisition
for duels, is what exploration means in this context. Given
a model as described in Section 2.1, the output variables y?
follow a Bernoulli distribution with probability given by the
preference function ⇡f . A straightforward interpretation of
pure exploration would be to search for the duel of which
the outcome is most uncertain (has the highest variance of
y?). The variance of y? is given by

V[y?|[x?,x
0
?], Dj ] = ⇡f ([x?,x

0
?]; Dj)(1�⇡f ([x?,x

0
?]; Dj)).
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Epistemic and aleatoric uncertainty are different.

Exploration should done only with epistemic uncertainty.
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What about composite model?Deep Health
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Disclaimer

I don’t know how to categorize the uncertainty from a probabilistic
generative model for unsupervised learning such as VAE, GPLVM.
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Separation of Uncertainty in Complex model

We need a systematic approach to separate epistemic and aleatoric
uncertainty.

Let’s still focus on discriminative models

yi = f(xi) + εi
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Look back at BLR

yi = w>Φ(xi) + εi, w ∼ N (0, I), εi ∼ N (0, σ2)

Aleatoric uncertainty:

Unknowns that differ each time we run the same experiment.

Epistemic uncertainty:

Things one could in principle know but doesn’t in practice.

Zhenwen Dai What uncertainty do we get? 11 October 2019 18 / 27



One way to classify
Aleatoric uncertainty

Unknowns that differ each time we run the same experiment.

Independence among data points

yi = (xi, hi)

Epistemic uncertainty

Things one could in principle know but doesn’t in practice.

Global variable

yi = (xi, h)
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Variables Shared by a Subset of Data Points

Aleatoric uncertainty
yi = (xi, hi)

Epistemic uncertainty
yi = (xi, h)

What about something in between?

yi = (xi, hz(i)), z : {1, . . . , N} → {1, . . . , C}
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An example: Multi-output GP

Also known as Intrinsic Coregionalization

Each input location corresponds to C different output dimensions.

f = (f11, . . . , f1N , . . . , fC1, . . . , fCN)>.

f |X ∼ N (0,B⊗K), B ∈ RC×C , K ∈ RN×N .
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Latent variable multi-output GP

Assume B is a covariance matrix computed according to a kernel
function k(·, ·) over a set of variable h1, . . . ,hC .

hi is a latent variable, hi ∼ N (0, I).
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Figure 8: Visualizing the concept of our meta-model on the one-dimensional Forrester function. Left:
9 different tasks (solid lines) coming from the same distribution. Middle: We use a probabilistic
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resemble the original tasks.

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

Figure 9: Noisy samples from our meta-model for the SVM benchmark

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

log �

lo
g
C

Figure 10: Noiseless samples from our meta-model for the SVM benchmark

16

Zhenwen Dai What uncertainty do we get? 11 October 2019 22 / 27



Latent variable multi-output GP
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Figure 2: The results on two synthetic datasets. (a) The performance of GP-ind, LMC and LVMOGP
evaluated on 20 randomly drawn datasets without missing data. (b) The performance evaluated on 20
randomly drawn datasets with missing data. (c) A comparison of the estimated functions by the three
methods on one of the synthetic datasets with missing data. The plots show the estimated functions
for one of the conditions with few training data. The red rectangles are the noisy training data and the
black crosses are the test data.

Synthetic Data. We compare the performance of the proposed method with GP with independent ob-
servations and the linear model of coregionalization (LMC) [Journel and Huijbregts, 1978, Goovaerts,
1997] on synthetic data, where the ground truth is known. We generated synthetic data by sampling
from a Gaussian process, as stated in (3), and assuming a two-dimensional space for the different
conditions. We first generated a dataset, where all the conditions of a set of inputs are observed. The
dataset contains 100 different uniformly sampled input locations (50 for training and 50 for testing),
where each corresponds to 40 different conditions. An observation noise with variance 0.3 is added
onto the training data. This dataset belongs to the case of no missing data, therefore, we can apply
LVMOGP with the inference method presented in Section 3. We assume a 2 dimensional latent
space and set MH = 30 and MX = 10. We compare LVMOGP with two other methods: GP with
independent output dimensions (GP-ind) and LMC (with a full rank coregionalization matrix). We
repeated the experiments on 20 randomly sampled datasets. The results are summarized in Figure
2a. The means and standard deviations of all the methods on 20 repeats are: GP-ind: 0.24 ± 0.02,
LMC:0.28±0.11, LVMOGP 0.20±0.02. Note that, in this case, GP-ind performs quite well because
the only gain by modeling different conditions jointly is the reduction of estimation variance from the
observation noise.

Then, we generated another dataset following the same setting, but where each condition had a
different set of inputs. Often, in real data problems, the number of available data in different
conditions is quite uneven. To generate a dataset with uneven numbers of training data in different
conditions, we group the conditions into 10 groups. Within each group, the numbers of training
data in four conditions are generated through a three-step stick breaking procedure with a uniform
prior distribution (200 data points in total). We apply LVMOGP with missing data (Section 4) and
compare with GP-ind and LMC. The results are summarized in Figure 2b. The means and standard
deviations of all the methods on 20 repeats are: GP-ind: 0.43 ± 0.06, LMC:0.47 ± 0.09, LVMOGP
0.30 ± 0.04. In both synthetic experiments, LMC does not perform well because of overfitting
caused by estimating the full rank coregionalization matrix. The figure 2c shows a comparison of
the estimated functions by the three methods for a condition with few training data. Both LMC and
LVMOGP can leverage the information from other conditions to make better predictions, while LMC
often suffers from overfitting due to the high number of parameters in the coregionalization matrix.

Servo Data. We apply our method to a servo modeling problem, in which the task is to predict the
rise time of a servomechanism in terms of two (continuous) gain settings and two (discrete) choices of
mechanical linkages [Quinlan, 1992]. The two choices of mechanical linkages introduce 25 different
conditions in the experiments (five types of motors and five types of lead screws). The data in each
condition are scarce, which makes joint modeling necessary (see Figure 3a). We took 70% of the
dataset as training data and the rest as test data, and randomly generated 20 partitions. We applied
LVMOGP with a two-dimensional latent space with an ARD kernel and used five inducing points
for the latent space and 10 inducing points for the function. We compared LVMOGP with GP with
ignoring the different conditions (GP-WO), GP with taking each condition as an independent output
(GP-ind), GP with one-hot encoding of conditions (GP-OH) and LMC. The means and standard
deviations of the RMSE of all the methods on 20 partitions are: GP-WO: 1.03 ± 0.20, GP-ind:

7
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Epistemic or aleatoric?

For multi-task learning, one output correspond to a task. The
uncertainty associated with hi is epistemic uncertainty of the task.

What if only one observation can be collected for each task? It
becomes aleatoric!

A better way to see it may be epistemic within the group and
aleatoric for other groups.
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Soft group assignment
Let’s see a more confusing case by softening the group assignment.

The covariance of data points within a group is a bias kernel

B11 = b11




1 · · · 1
... . . . ...
1 · · · 1


 .

Augment the model with one hi for each data point xi,

yi = f(xi,hi),

the covariance matrix is B�K. The joint distribution
p(h1, . . . ,hN) correlates.
A trivial case would be the degenerate distribution
h1 = . . . = hN = ε, ε ∼ p(ε).
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Continuous Learning

An example of previous model is a model for continuous learning.

Data points arrives with different time, x1, . . . ,xT and y1, . . . ,yT .

The underlying function may change over time f1(·), . . . , fT (·).

We can construct such a model in the above form by constructing a
state-space model,

p(h1, . . . ,hT ) = p(h1)
T∏

t=2

p(ht|ht−1)

Are h1, . . .hT epistemic or aleatoric?
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Summary

Epistemic and aleatoric uncertainty and their role in decision
making.

“outliner” models that are hard to be classified.

Thoughts:

Looking at the uncertainty of the output variable may be the best
way.
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