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Motivation

I Bayesian Optimization aims at searching for the global minimum of an expensive
function g ,

xmin = arg min
x∈X

g(x).

I What if the function g is not directly measurable?



Preference vs. Rating

I The objective function of many tasks are difficult to precisely summarize into a
single value.

I Comparison is almost always easier than rating for humans.

I Such observation has been exploited in A/B testing.



BO via Preference

I Beyond a single A/B testing.

I To optimize a system via tuning this configuration, e.g., the font size, background
color of a website.

I The objective such as customer experience is not directly measurable

I Compare the objective with two different configurations.

I The task is to search for the best configuration by iteratively suggesting pairs of
configurations and observing the results of comparisons.



Problem Definition

I To find the minimum of a latent function g(x), x ∈ X .

I Observe only whether g(x) < g(x′) or not, for a duel [x, x′] ∈ X × X .

I The outcomes are binary: true or false.

I The outcomes are stochastic.



Preference Function

I In this work, the probabilistic
distribution is assumed to Bernoulli:

p(y ∈ {0, 1}|[x, x′]) = πy (1− π)1−y ,

π = σ
(
g(x′)− g(x)

)
.

I π is referred to as a preference
function.

I A Preferential Bayesian optimization
algorithm will propose a sequence of
duels that helps efficiently localize the
minimum of a latent function g(x).
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A Surrogate Model

I The preference function is not observable.

I Only observe a few comparisons.

I Need a surrogate model to guide the search.
I Two choices:

I a surrogate model for the latent function (like in
standard BO). [Brochu, 2010, Guo et al., 2010]

I a surrogate model for the preference function
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A Surrogate Model of Preference Model

I We propose to build a surrogate model for the
preference function.

I Pros: easy to model (Gaussian process Binary
Classification is used:)

p(y? = 1|D, [x, x′], θ) =

∫
σ(f?)p(f?|D, [x?, x′?], θ)df?

I Pros: flexible latent function (e.g.,
non-stationality).

I Cons: the minimum of the latent function is not
directly accessible
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Who is the winner (the minimum)?

I The minimum beats all the other locations on average.

I Extending an idea from armed-bandits [Zoghi et al., 2015], we define the
soft-Copeland score as, (the average winning probability),

C (x) = Vol(X )−1
∫
X
πf ([x, x′])dx′,

I The optimum of g(x) can be estimated as, denoted as the Condorcet winner,

xc = arg max
x∈X

C (x),
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The current estimation of minimum

I Only have a surrogate model of preference function.

I Estimate the soft-Copeland score from the surrogate model and get an
approximate Condorcet winner.

I Note that the approximated Condorcet winner may not be the optimum of g(x).



Acquisition Function

I Existing Acq. Func. are not applicable.

I They are designed to work with a surrogate model
of the objective function.

I In PBO, the surrogate model does not directly
represent the latent objective function.

I We need a new Acq. Func. for duels!
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Pure Exploration Acquisition Function (PBO-PE)

I The common pure explorative acq. func., i.e. V[y ],
does not work.

I Propose a pure explorative acq. func. as the
variance (uncertainty) of the “winning” probability
of a duel:

V[σ(f?)] =

∫
(σ(f?)− E[σ(f?)])2 p(f?|D, [x, x′])df?
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Acquisition Function: PBO-DTS

To select the next duel [xnext , x′next ]:

1. Draw a sample from surrogate model

2. Take the maximum of soft-Copeland score as xnext .

3. Take x′next that gives the maximum in PBO-PE
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Experiment: Forrester Function

I Synthetic 1D function:
Forrester

I Observations drawn with
a probability: 1

1+eg(x)−g(x′)

I g(xc) shows the value at
the location that
algorithms believe is the
minimum.

I The curve is the average
of 20 trials.

IBO: [Brochu, 2010]
SPARRING: [Ailon et al., 2014]
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Experiments: More (2D) Functions
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Summary

I Address Bayesian optimization with preferential returns.

I Propose to build a surrogate model for the preference function.

I Propose a few efficient acquisition functions.

I Show the performance on synthetic functions.



Questions?



Exploration & Exploitation

The two ingredients in an acquisition function: Exploration & Exploitation.



Exploration in PBO

I To understand exploration in PBO by designing a
pure explorative acq. func.

I Exploration in standard BO can be viewed as the
action to reduce uncertainty of a surrogate model.

I A purely explorative acq. func.

V[y?] =

∫
(y? − E[y?])2 p(y?|D, x?)dy?

I Can we extend this idea to PBO?



A Straight-Forward Choice

I A straight-forward extension from standard BO:

V[y?] =
∑

y?∈{0,1}

(y? − E[y?])2 p(y?|D, [x?, x′?])

=E[y?](1− E[y?])

I The maximum variance is always at where
E[y?] = 0.5!

I The variance may not reduce with observations!
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Dueling-Thompson Sampling (DTS)

I To balance exploration & exploitation, we borrow
the idea of Thompson sampling by drawing a
sample from the surrogate model.

I Compute the soft-copeland score on the drawn
sample.

I The value xnext that gives the maximum
soft-copeland score gives a good balance between
exploration and exploitation.

I Take it as the first value of the next duel.
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Aleatoric Uncertainty & Epistemic Uncertainty

I The uncertainty of y? comes from two sources: the aleatoric uncertainty σ(f?) and
the epistemic uncertainty p(f?|D, [x?, x′?], θ)

p(y? = 1|D, [x, x′], θ) =

∫
σ(f?)p(f?|D, [x?, x′?], θ)df?

I Aleatoric Uncertainty: the stochasticity of the underlying process

I Epistemic Uncertainty: the uncertainty due to limited observations

I Exploration should focus on epistemic uncertainty.



Multi-arm Bandits on 2D
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