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What is the scalability issue of Gaussian Process?
Numerical solution

Model/Inference Approximation

Mini-batch Training

How to draw a function sample?

Zhenwen Dai (Spotify) Scalability of Gaussian Process 14 September 2021 @GPSS 2021 2/59



Gaussian Process Regression
Input and Output Data:

y:(yla"-7yN)7 X:(Xl,...,XN)T

p(y[f) =N (ylf,o’T), p(£]X) = N (£]0. K(X, X))
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Behind a Gaussian process fit

@ Maximum likelihood estimate of the hyper-parameters.

¢* = arg maxlog p(y|X, ) = arg maxlog NV (y|0, K + ¢°I)
0 0

@ Prediction on a test point given the observed data and the optimized
hyper-parameters.

p(f* |X*7 Yy, X7 8) =
N (£ K. (K +0’) 'y, K.. — K.(K+0’I)'K])

Zhenwen Dai (Spotify) Scalability of Gaussian Process 14 September 2021 @GPSS 2021 4/59



How to implement the log-likelihood (1)

@ Compute the covariance matrix K:

k‘(Xl,Xl) k‘(Xl,XN)
K=

k(xn,x1) -+ k(xXy,Xn)

where k(x;,x;) = vexp (—gz(x; — x;) T (x; — x;))

@ The complexity is O(N2Q).
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How to implement the log-likelihood (2)

@ Plug in the log-pdf of multi-variate normal distribution:
log p(y|X) =log N (y|0,K + ¢°I)
1 1
=-3 log [27(K + o*I)| — EyT(K + 0’1y

N 1
= — 5 Nlog 2m - Zi:lOgLn' il

@ Take a Cholesky decomposition: L = chol(K + ¢*I), such that K + ¢?I = LL".

@ The computational complexity is O(N?® + N? + N). Therefore, the overall
complexity including the computation of K is O(N?3).
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A quick profiling (N=1000, )=10)
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def

Line Contents

log_likelihood(kern, X, Y, sigma2):
N = X.shape[0]

K = kern.K(X)

Ky = K + np.eye(N)*sigma2

L = np.linalg.cholesky(Ky)

LinvY = dtrtrs(L, Y, lower=1) [0]
logL = N#*np.log(2*np.pi)/-2.

logl += np.square(LinvY).sum()/-2.
logL += -np.log(np.diag(L)).sum()
return logL
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Empirical analysis of computational time

@ | collect the run time for N = {10, 100, 500, 1000, 1500, 2000}.
@ They take 1.3ms, 8.5ms, 28ms, 0.12s, 0.29s, 0.76s.
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What if we have 1 million data points?

The mean of predicted computational time is 9.4 x 107 seconds ~ 2.98 years.
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Well, it is only a matrix inversion.

@ The cubic complexity O(N?) only comes from y ' (K + o2I)"ly.
@ There must be some Numerical Linear Algebra algorithms to speed it up!?
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Quadratic Optimization Formulation

@ Consider the problem: X .
V:K_ly, K:K+O'QI

@ Rewrite it as a linear system:
Kv—-y=0

@ This can be formulated as a quadratic optimization:

v =argminv' Kv —v'y
v
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Conjugate Gradient Method (1)

e Conjugate Gradient (CG) method is an efficient solver
for the quadratic problem:

v =argminv Kv —v'y
v

@ Solve it by finding n linearly independent vectors
{d;,dn} such that:

V' =vo+ady + ...+ andy Conjugate Gradient (CG)

Figure taken from [Davies, 2015]
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Conjugate Gradient Method (2)

e CG is an iterative algorithm.
@ CG recovers the exact solution after IV iterations.

@ We get an approximate solution with #iterations
<< N.

e Each iteration is O(N?).

Zhenwen Dai (Spotify) Scalability of Gaussian Process

Conjugate Gradient:

do=uy =y —Kvg
uZ-Tu

~ 4/ K4,

Vil = Vi + od;

Q;

u; = uw; — o Kd;

.
3 Wi Wi
il = T

diy1 = v + Biqad;

14 September 2021 @GPSS 2021

13/59



Convergence and Preconditioning

@ Numerical stability and rate of convergence of CG are

sensitive to the condition number: /
% )\maX(K) /\

,{(K) N >\min (K)

P K

P_IKV B P_ly -0 Preconditioning

@ Improve the condition number by solving:

Figure taken from [Davies, 2015]

o Ideally P~' = K~ so that x(P'K) = 1.
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Example of CG

Iteration O Iteration 2
Tl
L

e Example from [Davies, 2015].
@ Estimate the posterior mean of GP.
@ 5 separate runs (N = 415)

e CG is used in GPyTorch [Gardner
et al., 2018].
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O(N?) is still slow!

Gaussian Process Model/Inference Approximation
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Big data (?)

@ lots of data # complex function

@ In real world problems, we often collect a lot of data for modeling relatively simple

relations.

20

= Mean
X Data
Confidence

—0.2

0.0

0.2 0.4 0.6 0.8 10 1.2

Zhenwen Dai (Spotify) Scalability of Gaussian Process 14 September 2021 @GPSS 2021

17 /59



Data subsampling?

@ Real data often do not evenly distributed.
@ We tend to get a lot of data on common cases and very few data on rare cases.
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Covariance matrix of redundant data

o With redundant data, the covariance matrix becomes low rank.

@ What about low rank approximation?
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Low-rank approximation

@ Let's recall the log-likelihood of GP:
log p(y|X) = log N (y|0,K + ¢°I)

where K is the covariance matrix computed from X according to the kernel
function k(-,-) and o2 is the variance of the Gaussian noise distribution.

@ Assume K to be low rank.
@ This leads to Nystrom approximation by Williams and Seeger [Williams and Seeger,
2001].
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Approximation by subset

@ Let's randomly pick a subset from the training data: Z € RM*@.

@ Approximate the covariance matrix K by K.
K =K.K_'K|, where K., = K(X,Z) and K.. = K(Z, Z).

o Note that K € RV*N K, € RN*M and K., € RM*M,
@ The log-likelihood is approximated by

logp(y|X,0) ~ log N (y]0, K.K_'K + 0°I).
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Nystrom approximation example

The covariance matrix with Nystrom approximation using 5 random data points:
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Nystrom approximation example

Compute tr (K — K) with different M.
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Efficient computation using Woodbury formula

@ The naive formulation does not bring any computational benefits.
A 1 % 2 L Tz 21\ —1
L= —§log|27r(K+0 I — 5Y (K+0 1)y
@ Apply the Woodbury formula:
(KKK +0’I) ' =01 - 'K, (K.. + 0 ?K/K,) 'K

e Note that (K., + 0 2K/K,) € RM*M,
@ The computational complexity reduces to O(NM?).
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Nystrom approximation

@ The approximation is directly done on the covariance matrix without the concept of
pseudo data.

@ The approximation becomes exact if the whole data set is taken, i.e,,
KK 'K' = K.

@ The subset selection is done randomly.
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Gaussian process with Pseudo Data (1)

@ Snelson and Ghahramani [2006] proposes the idea of having pseudo data, which is
later referred to as Fully independent training conditional (FITC).

@ Augment the training data (X, y) with pseudo data u at location Z.

(RN (Bl e (6™ )

where K,y = K(X, X), Ky, = K(X,Z) and K,,, = K(Z,Z).
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Gaussian process with Pseudo Data (2)

@ Thanks to the marginalization property of Gaussian distribution,

pyIX) = [ ply.ulX. 2).
@ Further re-arrange the notation:

p(Y? 11|X, Z) = ])(Y|u, X, Z)p(u|Z)

where p(u|Z) = N (u|0, K.,),
p(ylu, X, Z) = N (y KK u Kpy — Kp K 1K, +0°T).

Zhenwen Dai (Spotify) Scalability of Gaussian Process 14 September 2021 @GPSS 2021 27 /59



FITC approximation (1)

@ So far, p(y|X) has not been changed, but there is no speed-up.
) Kff - RNXN in Kff — Kqu;}K}ru + 0'21.

@ The FITC approximation assumes
Py, X,Z) = N (yKpKyu, A +0°T)

where A = (Kjf — K K,/ K} ) oL
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FITC approximation (2)

@ Marginalize u from the model definition:
Py|X,Z) =N (y]0,K; K, K/, + A+ 0*1)
@ Woodbury formula can be applied in the sam way as in Nystrom approximation:
(KKK + A+ ) ' =A - AK.(K.. + K] AK.) 'K A,

where A = (A + o?1)~".
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FITC approximation (3)

FITC allows the pseudo data not being a subset of training data.

The inducing inputs Z can be optimized via gradient optimization.

Like Nystrom approximation, when taking all the training data as inducing inputs,
the FITC approximation is equivalent to the original GP:

plylX,Z =X) =N (y|0,K;; + 0’I)

FITC can be combined easily with expectation propagation (EP).

Bui et al. [2017] provides an overview and a nice connection with variational sparse
GP.
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Model Approximation vs. Approximate Inference
FITC approximation changes the model definition.

@ A better objective under FITC does not necessarily corresponds to a better
approximation to the original GP.

@ In fact, optimizing Z can lead to overfitting. [Quifionero-Candela and Rasmussen,
2005, Bauer et al., 2016]

FITC (nlml = 23.16, 0, = 1.93 - 107%)

[: + + + + + + |+ |+ =

Optimal values for the exact GP: niml = 34.15, 0 = 0.274. [Bauer et al., 2016]
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Model Approximation vs. Approximate Inference

Variational inference (VI) takes a different approach.

@ VI keeps the model definition untouched.

@ VI derives a lower bound of the log-marginal likelihood:

og(s) > [ ate) log p%)dx .

o Alternatively, it can be written as

KL (q(x) || p(z]y)) = logp(y) — L.
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Variational Sparse Gaussian Process (1)

e Titsias [2009] introduces a variational approach for sparse GP.

@ It follows the same concept of pseudo data:

p(y|X) = / Py £)p(E[u, X, Z)p(u|Z)

where p(u|Z) = N (u|0,K,.,),
p(yu,X,Z) = N (y|Kp K u, Kpr — Kp K Kj, +0°T).
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Variational Sparse Gaussian Process (2)

o Instead of approximate the model, Titsias [2009] derives a variational lower bound.
@ Normally, a variational lower bound of a marginal likelihood looks like

log p(y[X) =log / Py |E)p(E[u, X, Z)p(ulZ)

f,u
p(y|f)p(flu, X, Z)p(u|Z)
q(f, u) '

> / ¢(f, ) log
fou
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Special Variational Posterior

o Titsias [2009] defines an unusual variational posterior:
q(f,u) = p(flu, X, Z)q(u), where g(u) =N (ulp, X).

@ Plug it into the lower bound:

[ ikl Py ) plER X ZTp(u]Z)
= | e Xzt tos P
(108§P(Y|f)> (fFlu,X,Z)q(u) — KL (¢(u) || p(ul|Z))
= (log NV (y KKy, u,0%1)) ) — KL (g(u) [| p(ul|Z))
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Special Variational Posterior

@ There is no inversion of any big covariance matrices in the first term:

N 1
Y log oo — — <(Kqu;u1u — y)T(Kqu;}u — y)>

202 q(u)

@ The overall complexity of the lower bound is O(NM?).
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Tighten the Bound

e Find the optimal parameters of ¢(u):

*

X = arg max L(p, ).
7))

@ Make the bound as tight as possible by plugging in p* and X*:

L =1logN (y|0,K;K K], +0’I) — %tr (Ksr — KK K7 ) -

@ The 1st term is the same as in the Nystrom approximation.

@ The overall complexity of the lower bound remains O(N M?).
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Variational sparse GP

@ Note that £ is not a valid log-pdf, fy exp(L(y)) < 1, due to the trace term.

@ As inducing points are variational parameters, optimizing the inducing inputs Z
always leads to a better bound.

@ The model does not “overfit” with too many inducing points.

10 4 = Mean

Inducing
X Data
Confidence
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FITC vs. Variational sparse GP

@ model approximation vs. approximate inference (see [Bauer et al., 2016])

@ Note that, when point estimating hyper-parameters, if the number of inducing
points is too small, the model may “under-fit":

L =logp(y) — KL (q(z) | p(z[y))

FITC (nlml = 23.16, 0, = 1.93 - 10~%) VFE (nlml = 38.86, 0,, = 0.286)
T T T

[: + + + + + + [+ |+ | j

Optimal values for the exact GP: nlml = 34.15, 0 = 0.274. [Bauer et al., 2016]
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Limitations of Sparse GP

Variational sparse GP has computational complexity O(N M?).

The computation becomes infeasible under two scenarios:

@ The number of data points NV is very high, e.g., millions of data points.

@ The function is very complex, which requires tens of thousands of inducing points.
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Mini-batch Learning (1)

@ Mini-batch learning allows DNNs to be trained on millions of data points.

@ Given a set of inputs and labels, D = {x;, v;},, (xi,4;) ~ p(x,y), the true loss
function is defined as

Ctrue = / I[(fo(x), y)p(x,y)dxdy ~ %Z I(fo(x),y) =c,

where fy(-) is DNN and [(-, -) is the loss function.
e Gradient descent (GD) updates the parameters by

de

Oy = 0, — 77@-
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Mini-batch Learning (2)

@ Mini-batch learning approximates the loss by subsampling the data,
1
CMB = B Z U(fo(xi),Yi)-
Xi,Yi~P(%,y)
@ Stochastic gradient descent (SGD) updates the parameters by

deve
dg -

Opp1 =0, — 1

@ Can mini-batch learning be applied to GPs as well?
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Mini-batch Learning for GPs

@ Mini-batch learning relies on the objective being an expectation w.r.t. the data,

Le., <l<f9(x)’y)>p(x,y)'
@ The log-marginal likelihood of GP:

log V (y]0, K + 0°I)

@ The variational lower bound of sparse GP:

log N (y|0, K K. K;, +0°I) — %ﬂtr (Ksr — KK Kj,)
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“Uncollapsed” Lower Bound

@ Hensman et al. [2013] discovers that the “uncollapsed” variational lower bound of
sparse GP can be used for mini-batch learning.

@ The “uncollapsed” variational lower bound of sparse GP:

L= <logp(Y|f)>p(f\u,x,Z)q(u) — KL (g(u) || p(u))

@ The 2nd term, KL (¢(u) || p(u)), does not depend on the data.
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“Uncollapsed” Lower Bound

@ In the 1st term, as p(y|f) = N (y|f, o*1),

log p(y|f) = Zlog/\f Yn! s 7?)

n=1

e Denote ¢(f|X,Z) = [ p(flu, X, Z)q(u)du.

<10gp(}’|f)>q(f|xz <ZIOgN Ynlfos o )>

q(f1X,Z)

_Z<log/\/ Unlfns ) gt tensy

n=1
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Stochastic Variational GP (SVGP)

@ The resulting lower bound can be written as the sum over the data,

N
Z logN yn‘fnv )>q(fn|xn,z) — KL <Q(u) ||p(u))
g (108 N (111 °) )1y — KL (W) [ () = L

XiyYi Nﬁ(x7y)

@ This allows us to do mini-batch learning with SGD,
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2D Synthetic Data
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Airline Delay Data

Flight delays for every commercial flight in the USA from January to April 2008.
700,000 train, 100,000 test

GPs on subsets SVI GP
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The pros and cons of SVGP

Pros

@ With mini-batch learning, the computational complexity reduces from O(N M?) to
O(M?3).

Cons

@ The variational distribution ¢(u) needs to be explicitly optimized.
@ The number of variational parameters increase from MQ to (2M + M?)Q.

@ Optimization relies on SGD methods and the methods like L-BFGS are no longer
applicable.

@ It can be challenging to initialize g(u).
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GP sampling?

@ So far, we only consider parameter estimation and posterior inference.
@ What about drawing a sample from GP posterior?

@ Draw a sample for a set of new location X,:

fi v NV (f*lK*(K + 021)_1Y7 K. —K.(K+ UZI)_lK*T)

Zhenwen Dai (Spotify) Scalability of Gaussian Process 14 September 2021 @GPSS 2021 50 /59



Draw a finite sample

@ A sample can be computed via the reparameterization trick.
@ Compute the Cholesky factor:

L, = chol(K,, — K, (K + ¢’I) 'K])

@ Draw sample for an isotropic Gaussian ¢; ~ N (0,1).

@ The posterior sample can be generated by transforming ¢;:

f, = K.(K + 0’I) 'y + L,
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What about a function sample?

e GP is a distribution over functions: GP(0, k(-,-)).

@ Can we draw a parametric function sample from a GP posterior?

.fi ~ QP(f|0, k(v )7D)
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GP function sample

@ GP function sample can be handy for downstream tasks.

@ For example, Bayesian optimization with Thompson sampling.
}A{:a’rgm;nfz(X% fz ng(f|07k<7)up)

@ The minimum of a function sample => a sample from the distribution of minima
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Weight-space approximation to GP

e If the kernel function is degenerate, k(x,x) = ¢(x)" ¢(x).
@ GP is written as a Bayesian Linear Model:

p(ylw, X) =N (y|@w,o’T), p(w) =N (w[0,T), @ =(¢(x1)....,H(xx))

@ Get back GP formulation by marginalizing w:

p(y|x) = N (y|®0,2I2" + 0°I) = N (y]0,K + ¢°I)
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Sample from Weight-space approximation

@ The posterior of GP is encoded into p(w|y, X) (a Gaussian distribution).
@ First, we draw a sample of w: w; ~ p(w|y, X).

e Considering the noise-free observation f = w¢(x), we get a function sample:

fi(x) = wig(x)
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How to approximate a kernel function? (1)

@ For the above to work, we need the approximation k(x,x’) ~ ¢(x) " ¢(x).

@ For stationary kernels, remember Bochner Theorem? (Markus' slides)

o Let's apply Fouriers to the kernel K(7) := K(z, '), where 7 = z — ' (instead of f(z))

Theorem (Bochner)

Any stationary kernel K : RP — R and its spectral density S : RP — R are Fourier duals
€3 T
K(r) = / S(w)e’™ T dw (Inverse Fourier Transform)

Sw) = / K(r)e > "dr. (Fourier Transform)
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How to approximate a kernel function? (2)

0 k(x,x) =E,[2,(x)2,(X)], 20 (x) = Kemel Name k(&) p(w) 2
ﬁCOS(WTX + b) Gaussian 5 (Qﬂ)—%e—%

* Laplacian e—lAl 11, m

@ Draw a sample w; ~ p(w). Canchy Mty clan H

d

e Draw a sample b; ~ U|0, 27].
o ¢i(x) = V2cos(w; x + b;)

[Rahimi and Recht, 2008]
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Example of GP sample

Length-scale: 0.1
-

do pex3

Error variance: 1.0e-6

o Matérn—3/2 kernel Number of RFFs: 64
@ A more efficient method [Wilson et al., 2020]

[Kernel: Matérn-3/2 vJ M
=

4o paydnosaq

https://sml-group.cc/blog/2020-gp-sampling/

] = = PASNE
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